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Mixture summation among homologous carboxylic acids, that is, the relationship between detection

probabilities for mixtures and detection probabilities for their unmixed components, varies with similarity

in carbon-chain length. The current study examined detection of acetic, butyric, hexanoic, and octanoic

acids mixed with three other model odorants that differ greatly from the acids in both structure and odor

character, namely, 2-hydroxy-3-methylcyclopent-2-en-1-one, furan-2-ylmethanethiol, and (3-methyl-

3-sulfanylbutyl) acetate. Psychometric functions were measured for both single compounds and binary

mixtures (2 of 5, forced-choice method). An air dilution olfactometer delivered stimuli, with vapor-phase

calibration using gas chromatography-mass spectrometry. Across the three odorants that differed from

the acids, acetic and butyric acid showed approximately additive (or perhaps even supra-additive)

summation at low perithreshold concentrations, but subadditive interactions at high perithreshold

concentrations. In contrast, the medium-chain acids showed subadditive interactions across a wide

range of concentrations. Thus, carbon-chain length appears to influence not only summation with other

carboxylic acids but also summation with at least some unrelated compounds.
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INTRODUCTION

The physical stimuli associated with the aromas of many foods
and beverages are complex chemical mixtures. For example,
about 25 compoundsmake important contributions to the aroma
of coffee (see ref 1). Analytical techniques such as gas chromato-
graphy-mass spectrometry (GC-MS) can be used to identify
these chemical constituents. Furthermore, hybrid sensory/analy-
tical techniques, including aroma extraction dilution analysis
(AEDA) and gas chromatography-olfactometry (GC-O), can
be used to evaluate the intensity or character (quality) of
individual constituents (2-5). However, attempts to mimic
natural aromas by combining important components identified
through hybrid techniques often fail (see ref 6 for some dis-
cussion). Thus, minor components may interact with other
compounds to shape aroma perception.

One key question is whether chemicals below the sensory
detection threshold can combine to form a detectable mixture.
Some studies have determined olfactory detection thresholds,
that is, the concentration needed for a criterion level of detection,
for both single compounds and mixtures (see, e.g., refs7-11). In
general, concentrations of individual components in a threshold-
level mixture fall below threshold concentrations for unmixed
components. In other words, summation occurs, such that sub-
jects may reliably detect a mixture even when unable to reliably
detect the individual mixture components. However, a detailed
examination of the results reveals that patterns of summation

vary greatly. Approximately additive interactions are most com-
mon, but subadditivity and synergy have also been observed.

Is variance in degree of summation meaningful? Because most
studies failed to include vapor-phase calibration of stimuli, the
relationship between the concentration of each odorant presented
singly and the corresponding concentrations in mixtures was not
known. The rigor of stimulus control has seldom been clear. Fur-
thermore, the studies only estimated thresholds and did not mea-
sure complete proportion correctly versus concentration (psycho-
metric) functions. Thus, detailed analyses of mixture interactions
across a range of concentrations have seldom been possible.

Cometto-Muñiz et al. (12-15) overcame some of these limita-
tions. They measured vapor-phase concentrations of stimuli and
measured complete psychometric functions for single (unmixed)
compounds in three studies (13-15). The psychometric functions
for unmixed compounds, together with models of additivity,
allowed the authors to formulate binary mixtures with different
levels of predicted detection performance. As in previous studies,
substantial summation occurred. However, mixtures below the
level typically defined as threshold (but detected at greater than
chance level) showed a greater degree of summation than mix-
tures that were above threshold (but detected less than 100% of
the time). Thus, Cometto-Muñiz and colleagues demonstrated
concentration dependence (weaker odorants summedmore com-
pletely than stronger odorants).

Interestingly, Cometto-Muñiz and colleagues found a similar
pattern of concentration dependence for ethyl propanoate mixed
with ethyl hexanoate (a structurally similar pair of molecules
within the same aliphatic series) and for butyl acetate mixed with*Corresponding author (e-mail pwise@monell.org).
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toluene (a pair with less structural similarity) (14,15). Thus, some
general rules of interaction might apply for diverse compounds.
However, structural differences among compounds were not
manipulated gradually and systematically, so the studies were
not ideal to draw conclusions regarding differences among
compounds.

A subsequent study, which also included vapor-phase calibra-
tion, examined interactions among four homologous carboxylic
acids (16). Full psychometric functions were measured for acetic
(C2), butyric (C4), hexanoic (C6), and octanoic acids (C8). Full
psychometric functions were also measured for C2 mixed with C4

(difference of two methylene units), for C2 mixed with C6

(difference of four units), and for C2 mixed with C8 (difference
of six units). An additivity model (see Materials and Methods)
was applied to psychometric functions for the unmixed acids to
predict psychometric functions for the binary mixtures. Level
dependence only occurred for C2mixedwithC4. For this pair that
differed by only twomethylene units, summationwas subadditive
at higher concentrations and additive (or perhaps even supra-
additive) at lower concentrations. For the mixtures that differed
by four and six methylene units, summation was essentially
additive across the full range of measured concentrations. Thus,
close structural similarity within an aliphatic series may be
required to observe nonadditive interactions.

The current study tests the hypothesis that carbon chain length
is an important factor in determining interactions among com-
pounds that differ more in structure, that is, between members of
an aliphatic series and compounds outside that series. Model
stimuli will again include aliphatic carboxylic acids (C2, C4, C6,
andC8). Stimuliwill also include three common flavor compounds
that differ greatly from the acids in both molecular structure and
suprathreshold odor character, namely, 2-hydroxy-3-methylcyclo-
pent-2-en-1-one, furan-2-ylmethanethiol, and (3-methyl-3-
sulfanylbutyl) acetate. If very close structural similarity is required
to observe nonadditive interactions, then mixtures of acids and
other compounds should all show additive interactions. On the
other hand, if carbon-chain length is important in general, then
there should be systematic differences among the carboxylic acids
in how they sum with various flavor compounds.

MATERIALS AND METHODS

Subjects. Twelve healthy, nonsmoking adults (seven female, five male)
participated. Ages ranged from 22 to 47 years. All provided written
informed consent on forms approved by an Institutional Review Board
at the University of Pennsylvania. All experiments were conducted in
compliance with the appropriate laws and institutional guidelines. Most
subjects were employees of the Monell Chemical Senses Center. Other
subjects were recruited from the local community. Both employees and
outside subjects were paid. All subjects had extensive experience in
previous experiments using the same procedures and apparatus used in
the current study.

Materials. Stimuli included four aliphatic, carboxylic acids: acetic acid
(CAS Registry No. 64-19-7, Nagase ChemteX Corp., Osaka, Japan,
99.7% pure), butyric acid (CAS Registry No. 107-92-6, Daicel Chemical
Industries, Ltd., Tokyo, Japan, 99.6%pure), hexanoic acid (CASRegistry
No. 142-62-1, Chisso Corp., Tokyo, Japan, 98.5% pure), and octanoic
acid (CAS Registry No. 124-07-2, Inoue Perfumery Co., Ltd., Tokyo,
Japan, 97.3% pure). Stimuli also included three common flavor com-
pounds: 2-hydroxy-3-methylcyclopent-2-en-1-one (commonly called ma-
ple lactone, abbreviated here as ML, CAS Registry No. 80-71-7,
Toyotama International Inc., Tokyo, Japan, 98.3% pure), furan-
2-ylmethanethiol (commonly called furfuryl mercaptan, abbreviated here
as FM, CAS Registry No. 98-02-2, Oxford Chemicals Limited, 95.1%
pure), and (3-methyl-3-sulfanylbutyl) acetate (MSA, CAS Registry No.
50746-09-3, Ogawa & Co., Ltd., 99.2% pure). GC-MS (see Olfactometer
and Calibration) was used to verify that all stimuli met or exceeded
manufacturer claims regarding purity.

The acids are homologous compounds that share the same functional
group, but differ in number of methylene units in the base chain (Figure 1).
The other three compounds are diverse in structure.MLhas a sweet, maple
syrup aroma.FMhas a roasted, coffee aroma.MSAhas a fruity odor. Both
FM andMSA are thiols and share a slight sulfurous note. All compounds
are found in foods and beverages, either naturally or as added flavors.

Subjects received a six-step dilution series of each unmixed compound
(Table 1). Successive concentration steps differed by a factor of about 2.2.
In addition, subjects received a six-step dilution series of each acid paired
with each of the other three compounds. For example, acetic acid was
mixed with ML (C2-ML), with MSA (C2-MSA), and with FM
(C2-FM). Accordingly, subjects received 12 mixtures in total. Concentra-
tions of individual compounds were the same in binary mixtures as they
were when presented alone. For example, the dilution series for C2-ML
consisted of the lowest concentration step of C2 added to the lowest step of
ML, the second lowest step of C2 added to the second lowest step of ML,
etc., up to the highest step of each mixture component. Extensive pilot
work suggested the range of concentrations would span a wide range of
detection performance for most subjects, with comparable levels of
detection at a given step across compounds.

Olfactometer and Calibration. All stimuli were presented using an
automated, air dilution olfactometer constructed in our laboratory. A
more detailed description of the olfactometer is available at http://chemse.
oxfordjournals.org/cgi/content/full/bjp062/DC1. Briefly, nitrogen flowed
through odor vessels containing pure chemicals (powdered ML was
diluted with Milli-Q filtered water at 0.01 g/mL before being placed in
an odor vessel). Odorized nitrogen was mixed with filtered air to create a
six-step dilution series of each stimulus. Chemicalmixtureswere formedby
combining nitrogen streams from two separate odor vessels, that is, in
vapor phase, before subsequent air dilution. All concentrations were
generated continuously and vented out of the room when not presented
to subjects. Electronic valves could gate any of the six concentrations, or a
clean air blank, to a glass cone. Subjects sampled by placing their noses in
the cones. The olfactometer provided a total flow of 30 L/min at output to
allow subjects to sniff without inhaling room air.

Flow from the olfactometer was collected in 4.7 L Tedlar gas sampling
bags. Analytical sensitivity was enhanced by collecting odor molecules

Figure 1. Molecular structures of the odor materials used in the experi-
ment.

Table 1. Vapor-Phase Concentrations of Stimulus Materials (log ppm by
Mass)

compounda

dilution C2 C4 C6 C8 ML MSA FM

5 -2.86 -4.34 -3.46 -3.27 -3.00 -5.57 -6.74

4 -2.51 -3.99 -3.11 -2.93 -2.67 -5.23 -6.40

3 -2.17 -3.63 -2.76 -2.60 -2.35 -4.89 -6.06

2 -1.82 -3.28 -2.41 -2.27 -2.02 -4.55 -5.71

1 -1.47 -2.93 -2.06 -1.94 -1.70 -4.20 -5.37

0 -1.12 -2.58 -1.71 -1.60 -1.37 -3.86 -5.03

aC2, acetic acid; C4, butyric acid; C6, hexanoic acid; C8, octanoic acid; MSA,
(3-methyl-3-sulfanylbutyl) acetate; FM, furan-2-ylmethanethiol; ML, 2-hydroxy-
3-methylcyclopent-2-en-1-one.
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using solid-phase microextraction (SPME). SPME fibers used for collec-
tion were 2 cm, 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane
(DVB/carboxen/PDMS) “Stableflex” fibers (Supelco Corp., Bellefonte,
PA). Odorants in the Tedlar bags were then sampled by inserting the
tapered end of the SPME fiber holder through a septum on the sampling
bags and extending the SPME fiber into the sample for 45 min.

To desorb and analyze the collected sample, the SPME fiber containing
the adsorbed odorant was inserted into the hot injection port of a Voyager
GC-MS system (Thermoquest/Finnigan, San Jose, CA). The GC-MS
systemwas equippedwithXcalibur software (version 1.2, ThermoElectron
Corp., San Jose, CA). A Stabilwax column, 30M� 0.32 mmwith 1.0 μm
coating (Restek Corp., Bellefonte, PA), was used for separation and
analysis of the odorants collected from all samples. The following
chromatographic protocol separated components: 60 �C hold for 4 min,
followed by a temperature ramp of 6 �C/min to 230 �Cwith an 8 min hold
at this final temperature. Accordingly, each run lasted 42.3 min before the
instrument recycled and readied itself for the next run. The injection port
was set at 230 �C. Helium carrier gas was used at a constant column flow
rate of 2.5 mL/min throughout the analysis. Data acquisition and
operating parameters for the mass spectrometer were set as follows: scan
rate, 2 scans/s; scan range, m/z 40-200; ion source temperature, 200 �C;
and an ionizing energy, 70 eV.

An initial calibration for a particular condition (i.e., a particular single
compound ormixture) occurred before any subjects were tested under that
condition. Samples of all concentrations were collected in Tedlar bags.
SPME samples were takenwithin 24 h of filling the bags. After absorption,
SMPE samples were submitted to GC-MS analysis as soon as possible
(within minutes). “Spot check” samples were collected during psychophy-
sical testing to verify stability over time (three or four samples each day,
randomly selected concentrations). These spot check samples, collected
between subjects or during breaks were also analyzed within 24 h of initial
collection.

To convert GC peak areas to parts per million (ppm; by mass), a liquid
dilution series of each stimulus compound (in chloroform) was used to
make gas-phase standards. Liquid standards were injected into Tedlar
bags filled with nitrogen and allowed to evaporate in the bags overnight.
The resulting standards were sampled using SPME fibers, with the same
procedure used to quantify samples from the olfactometer, namely, 45min
of sampling before desorption in the injection port of the GC-MS system.

Calibration yielded three important results with respect to interpreta-
tion of the psychophysical data. First, 2.2-fold air dilutions in the
olfactometer produced 2.2-fold drops in ppm. Second, concentrations
were stable, both within and between days. Third, concentrations for a
given single compound precisely matched concentrations of that com-
pound when presented in a binary mixture.

Procedure. A previous paper describes the general procedure in
greater detail (16). In brief, we used a 2 of 5, forced-choice procedure.
Subjects received two identical odors and three clean-air blanks (in
random order) each trial. We used a 2 of 5 procedure because it has a
lower percent correct by chance (10%) than the more commonly used
2-alternative (50%) and 3-alternative (33%) forced-choice procedures.
Lower chance performance allows more stable estimates of proportion
correct for mixtures in the low perithreshold range with fewer trials
collected per subject. Odor pulses lasted 2.5 s, with 3 s pauses between
pulses. Subjects knew that exactly two stimuli in each trial were odors and
were required to identify the two odor samples, guessing if uncertain.After
the initial presentation of the five stimuli each trial, subjects were allowed
to resample the stimuli if they wished (preliminary work suggested that
resampling helped optimize detection performance). At least 15 s elapsed
between trials.

During an experimental session (about 40 min) subjects received six
presentations of eachof six concentrations (seeTable 1) of a fixed stimulus.
The stimulus could be either a pure compound or a binary mixture (see
Stimulus Materials for more detail). Subjects received the stimuli in
blocked, ascending order of concentration. Subjects received the lowest
concentration on the first three trials, the next lowest in the next three
trials, and so forth up to the highest concentration.After a break of at least
5 min, the sequence was repeated, again starting with the lowest concen-
tration. Subjects received each binary mixture and each single compound
in two sessions, for a total of 12 trials per condition. The 19 stimuli,
7 unmixed compounds and 12 binary mixtures, were tested in blocked,

random order (although subjects needed to reschedule sessions on occa-
sion and thereby deviated from a strictly random order).

Data Analysis. Data analysis has been described in more detail in a
previous paper (16). In brief, experimenters computed proportion correct
for each subject, then applied a correction for chance so that performance
ranged from 0 (chance-level ability to identify the two odors among the
three blanks) to 1 (perfect ability to detect the twoodors): chance-corrected
proportion correct = (raw proportion correct - 0.10)/(1 - 0.10). Next, a
log-odds ratio transform was applied: log odds = ln[p/(1 - p)], where
p represents chance-corrected proportion correct and ln indicates natural
log. We chose this transform because pilot work showed that cumulative
logistic functions fit detection data better than other sigmoidal forms.
Finally, the log-odds ratio of chance-corrected proportion was averaged
across subjects for each compound and concentration and plotted against
log concentration to form psychometric functions. Transformation made
psychometric functions approximately linear, so functions could be fit
using least-squares linear regression.

Patterns of mixture interaction were compared with probability summa-
tion, that is, the assumption that detecting a binary mixture equals the
probability of detecting one or both of the components: p(AB) = p(A) þ
p(B) - p(A)p(B), where p(AB) represents the probability of detecting the
mixture, p(A) represents the probability of detecting componentA, and p(B)
represents the probability of detecting component B (17). Within the frame-
work of the model, if detection performance for the mixture falls below
probability summation, some degree of suppression has occurred relative to
statistical independence. If performance falls above probability summation,
then some form of mutual enhancement, or synergy, has occurred.

Linear fits to psychometric functions for individual subjects were used
to generate individual predictions of probability summation for each
binary mixture. Probability summation predictions were compared to
observed psychometric functions for binary mixtures using repeated
measures analysis of variance (ANOVA)models, with appropriate correc-
tion degrees of freedom to compensate for violations of sphericity.

RESULTS

Psychometric Functions for Unmixed Compounds. Proportion
correct increased smoothly with concentration, with good linear
fits in the coordinate space used (R2 ranged from 0.97 to 0.99, see
Figure 2). Fits to data from individual subjects ranged from

Figure 2. Psychometric functions for single (unmixed) compounds:
Y-axis, log-odds ratio of chance-corrected proportion correct (averaged
across subjects); X-axis, stimulus concentration in log ppm (bymass). The
lines represent best fit linear functions (least-squares regression). Error
bars represent ( SEM.
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0.55 to 0.99 (mean = 0.83, SD = 0.11). In short, cumulative
logistic functions fit the data reasonably well. For average data,
detection of all compounds rose from near chance to essentially
perfect with an increase in concentration of 1.7 log units (50-fold
increase). Slopes of psychometric functions were relatively
similar across compounds: In a concentration step � compound
ANOVA, the interaction failed to reach significance (p > 0.20).
Thresholds, that is, the concentrations that would lead to detec-
tion performance halfway between chance-level and 100% cor-
rect, are not a central focus of this study, but may have archival
value: -2.09 log ppm for C2, -3.62 log ppm for C4, -2.66 log
ppm for C6,-2.51 log ppm for C8,-5.98 log ppm for FM,-4.81
log ppm for MSA, and -2.25 log ppm for ML.

General Analysis of Detection Data for Binary Mixtures Com-

pared to Additivity Predictions Based on Detection of Unmixed

Compounds. As an initial step, detection data for all binary
mixtures, together with corresponding predictions based on
probability summation of detection data for the unmixed com-
ponents, were submitted to a repeated-measures ANOVA. Note
that, because predicted detection of binary mixtures was close to
perfect for the second-highest concentrations, data for the highest
concentrations were not analyzed. ANOVA factors follow: con-
centration step (1-5) � carboxylic acid (C2, C4, C6, and C8) �
aroma compound (FM, MSA, and ML) � data type (observed
detection for binary mixtures vs predicted values).

Most main effects failed to reach significance, with the notable
exception of concentration step, F(4, 44) = 146.74, p , 0.0001,
demonstrating an expected dose-response relationship. Most
interactions also failed to reach significance, including all inter-
actions involving aroma compound. Thus, the analysis provided
no evidence that ML, MSA, and FM differed greatly in their
mixture interactions with the carboxylic acids. In contrast, the
three-way interaction between carboxylic acid, concentration,
and data type reached significance, F(9.8, 108.1) = 2.22, p <
0.03, suggesting that mixture interactions differed among the
carboxylic acids (Figure 3).

Simple, concentration step � data type ANOVAs on data for
each carboxylic acid (averaged across aroma compounds) revealed
significant main effects of data type for C6, F(1, 11)=5.67, p <
0.001, and for C8, F(1, 11)=6.53, p<0.01, but no significant
main effects of data type for C2 or C4 (p>0.14). The analysis also
revealed significant concentration step� data type interactions for
C2, F(3.4, 38.9)=6.25, p<0.001, and for C4, F(3.1, 34.0)=4.39,
p < 0.01, but no significant interaction for C6 or C8 (p>0.30).
Thus, short-chain carboxylic acids (C2 and C4) demonstrated
additive, or perhaps even supra-additive, mixture summation with
the aroma compounds at low concentration steps, but subadditive
mixture summation at higher concentration steps. In contrast,
medium-chain (C6 and C8) carboxylic acids demonstrated sub-
additive mixture summation at all concentration levels tested.

Analysis of Data for Each Binary Mixture. Although the
overall ANOVA suggested that mixture interactions were
similar across the three model aroma compounds (FM, MSA,
and ML), it is possible that averaging across the compounds
might produce patterns of interaction that are not present in
data from individual aroma compounds. Thus, data for each
binary mixture were submitted to concentration step� data type
ANOVAs (Figures 4-6). Inspection of Figures 4-6 suggests
patterns of mixture interaction generally consistent with those
seen for data averaged across aroma compounds (Figure 3).

For mixtures including FM (Figure 4), the interaction between
concentration and data type reached significance for FM mixed
with C2, F(3.7, 41.2) = 6.89, p< 0.001, and for FMmixed with
C4, F(3.4, 37.9) = 3.22, p< 0.03, but failed to reach significance
for FMmixed with C6 or C8 (p>0.25).Main effects of data type
failed to reach significance, but there were trends toward sub-
additive interactions for FMmixed with C6, F(1, 11) = 4.26, p=
0.06, and for FMmixed with C8, F(1, 11)= 4.19, p=0.07. Thus,
analysis yielded significant interactions for mixtures with short-
chain acids and trends toward main effects for the medium-chain
acids, in good general agreement with analysis of data averaged
across the three aroma compounds.

For mixtures including MSA (Figure 5), the interaction be-
tween concentration and data type reached significance for MSA
mixed with C2, F(4, 44)=4.28, p<0.01, and for MSA mixed
with C4, F(2.8, 31.2) = 3.80, p < 0.03, but failed to reach

Figure 3. Psychometric functions for mixtures that included four aliphatic
carboxylic acids:Y-axis, log-odds ratio of chance-correct proportion correct;
X-axis, concentration of carboxylic acid in mixtures in log ppm by mass.
Each acid wasmixedwith three other unrelated odor compounds. For each
carboxylic acid, data from three series of mixtures were averaged to depict
general trends inmixture interactions with other compounds. Solid symbols
(solid lines) represent observed detection data. Open symbols (dashed
lines) represent additivity predictions based on detection functions for
individual components. Error bars represent ( SEM.

Figure 4. Psychometric functions for four aliphatic carboxylic acids mixed
with furan-2-ylmethanethiol (FM): Y-axis, log-odds ratio of chance-correct
proportion correct; X-axis, concentration of FM in mixtures in log ppm by
mass). Solid symbols (solid lines) represent observed detection data.
Open symbols (dashed lines) represent additivity predictions based on
detection functions for individual components. Error bars represent (
SEM.
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significance for MSA mixed with C6 or C8 (p> 0.65). The main
effect of data type reached significance for MSA mixed with C8,
F(1, 11) = 6.31, p<0.03, but failed to approach significance for
the mixtures with the other three carboxylic acids (p > 0.35).
Again, the pattern of significant interactions for mixtures with
short-chain acids, and general subadditivity for one of the
medium-chain acids, is roughly consistent with analysis of data
averaged across the three aroma compounds.

For mixtures including ML (Figure 6), the main effect of data
type reached significance forMLmixed with C6, F(1, 11) = 5.16,
p<0.05. For all other mixtures that includedML, both themain
effect of data type and the interaction failed to reach significance
(p> 0.30). Although statistical analysis suggested weaker devia-
tions from additivity for mixtures of ML and carboxylic acids,

inspection of Figure 6 does not reveal any gross qualitative
differences in patterns of interaction with respect to those seen
for mixtures including FM or MSA (but see Limitations).

DISCUSSION

Interaction amongMixture Components.Overall, mixture inter-
actions did not deviate drastically from additivity. In broad
terms, this finding agrees with a growing body of literature
showing summation among perithreshold odorants: Concentra-
tions of individual chemicals in a threshold level mixture tend to
fall below individual threshold concentrations (see, e.g., refs7-16
and 18).

Mixture summation also occurs in detection of perithreshold
tastes (19). Because perithreshold additivity occurs among bitter,
sweet, sour, and salty stimuli that are known to stimulate diverse
taste receptors (20), some more central mechanisms are able to
function as general detectors of sapid stimuli, independent of
kind. It is becoming increasingly clear that olfaction functions in a
similar fashion. Unlike taste, we cannot yet predict whether a
given pair of odorants will stimulate nonoverlapping groups of
receptors because the molecular receptive ranges of most verte-
brate olfactory receptor proteins have not been characterized.
Furthermore, physiological studies have found both olfactory
receptor neurons (peripheral mechanisms) and neurons in the
brain (central mechanisms) that respond to diverse odorants and,
therefore, constitute possible substrates for detectionmechanisms
that integrate across diverse odorants (21-25).

Regardless of specific mechanism, a general tendency toward
mixture summation has practical significance. For example, it
could prove to be very difficult to identify the source of an odor in
a food, beverage, or personal product when the target is amixture
of components having little or no perceptual impact on their own
(discussed in ref6). Mixture summation might also have implica-
tions for odor complaints in indoor air.

Effect of Concentration and Compound on Degree of Summa-

tion. In the suprathreshold (clearly perceptible) range, binary
mixtures often smell less intense than the sum of the intensities of
their unmixed components, even when one accounts for the
compressive nature of psychophysical functions (26-28).
Furthermore, suprathreshold summation is more complete when
the unmixed components are of relatively low intensity (26, 29).
The first rigorous studies that examined detection of perithres-
hold mixtures at different concentrations suggested that summa-
tion is more complete in the low perithreshold range than in the
high perithreshold range (14, 15). Accordingly, suprathreshold
subadditivity may begin at high perithreshold concentrations in
some cases (15, 16).

Subsequent work at the perithreshold level showed that
patterns of summation also depended on the compounds that
comprise the mixture (16). Specifically, Wise and colleagues
found that aliphatic carboxylic acids that differed by twomethyl-
ene units showed more complete summation at weaker concen-
trations than at higher concentrations but that pairs of acid that
differed by four or sixmethylene units showed essentially additive
interactions across awide range of concentrations (16). Thiswork
suggested that structural similarity, at least within an aliphatic
series, influences how odors sum inmixture. Previous work at the
suprathreshold level also found substantial differences in summa-
tion among odor pairs, but did not involve systematic variation of
molecular parameters (reviewed in ref 26).

In the current study, both acetic and butyric acid showedmore
complete summation at lower concentrations than at higher
concentrations when paired with structurally dissimilar mole-
cules. For hexanoic and octanoic acids, subadditive interactions
were seen across a wide range of concentrations. To the best of

Figure 5. Psychometric functions for four aliphatic carboxylic acids mixed
with (3-methyl-3-sulfanylbutyl) acetate (MSA): Y-axis, log-odds ratio of
chance-correct proportion correct;X-axis, concentration ofMSA inmixtures
in log ppm by mass). Solid symbols (solid lines) represent observed
detection data. Open symbols (dashed lines) represent additivity predic-
tions based on detection functions for individual components. Error bars
represent ( SEM.

Figure 6. Psychometric functions for four aliphatic carboxylic acids mixed
with 2-hydroxy-3-methylcyclopent-2-en-1-one (ML): Y-axis, log-odds ratio
of chance-correct proportion correct; X-axis, concentration of ML in
mixtures in log ppm by mass). Solid symbols (solid lines) represent
observed detection data. Open symbols (dashed lines) represent additivity
predictions based on detection functions for individual components. Error
bars represent( SEM.
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our knowledge, the data on mixtures that include C6 and C8

constitute the first evidence of a reduction from (simple) additiv-
ity across a wide range of concentrations generated using vapor-
phase calibration and rigorous psychophysical methods. More
generally, these results suggest that carbon chain lengthmaybean
important factor inmixture interactions between carboxylic acids
and at least some compounds outside this aliphatic series.

One might conclude that close structural similarity is not
important in mixture interactions. However, because both olfac-
tory receptor neurons and cells in the brain may respond to
molecules from more than one chemical class, carbon chain
length cannot be the only factor that determines functional
similarity (30, 31). In other words, what appears to be struct-
urally dissimilar to the chemist may not be structurally dissimilar
to the olfactory brain. Further work, continuing to use rigorous
psychophysical methods and vapor-phase calibration of stimuli,
is needed to generate and refine hypotheses regarding structure-
activity relationships in mixture interactions.

Regardless, both the current results and the previous work on
mixtures of carboxylic acids (16) suggest that carbon chain length
might be an important factor in mixture interactions at the
perithreshold level. This hypothesis is consistent with other
psychophysical work that has found systematic effects of carbon
chain length, including work on suprathreshold cross-adaptation
and discrimination (32, 33). Furthermore, work in physiology
suggests that at least some olfactory receptor proteins (and, thus,
the olfactory receptor neurons that express these proteins) are
tuned to carbon chain length to some extent (34). Many cells in
the olfactory bulbs are also tuned to carbon chain length,
although tuning is narrower than in olfactory receptor neu-
rons (35). In short, future structure-activity studies of mixture
interactions should continue to consider carbon chain length as a
potentially important factor.

Limitations. We used stimuli of the highest obtainable purity
within practical limits.We verified purity usingGC-MS. Still, it is
possible (although unlikely) that some trace compounds, present
in concentrations below instrument sensitivity, might have influ-
enced the results.

In addition, the sample of test compounds is limited. The
finding that short-chain carboxylic acids seemed to interact
differently with other compounds than did medium-chain acids
might not generalize to other aliphatic series. Even for carboxylic
acids, the finding might not generalize to interactions with other
aroma compounds. Furthermore, we cannot rule out differences
among the three aroma compounds we tested. The overall
ANOVA described under General Analysis of Detection Data
for Binary Mixtures Compared to Additivity Predictions Based
onDetection of Unmixed Compounds suggested that differences
among carboxylic acids were more reliable than differences
among the three aroma compounds. Thus, an examination of
the data averaged across the three aroma compounds (Figure 3)
suggests a testable hypothesis: Carbon chain length is important
for mixture interactions between carboxylic acids and other
compounds. However, with a sample of 12 subjects, our data
may not provide enough power to distinguish more subtle
differences among the three aroma compounds we tested. In
general, firm conclusions regarding structure-activity relation-
ships in mixture interactions must await additional data.

Furthermore, stimuli included only balanced mixtures, that is,
mixtures of components that roughly matched with respect to
detection probability. Other research, using some of the same
stimuli that this study employed, suggests that relative proportion
of components in mixtures can strongly affect degree of additiv-
ity (18). Finally, work on higher ordermixtures (mixtures of three
or more components) will eventually be required to understand

processing of natural mixtures. In short, more work will be
required to fully elucidate the rules that govern mixture interac-
tions in the detection of odors.

ABBREVIATIONS USED

C2, acetic acid; C4, butyric acid; C6, hexanoic acid; C8, octanoic
acid; FM, furan-2-ylmethanethiol; ML, 2-hydroxy-3-methylcy-
clopent-2-en-1-one; MSA, (3-methyl-3-sulfanylbutyl) acetate.

SAFETY

No unusual risks were involved that required special precau-
tions beyond standard laboratory safety procedures.
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(14) Cometto-Muñiz, J. E.; Cain, W. S.; Abraham,M. H. Odor detection
of single chemicals and binary mixtures. Behav. Brain Res. 2005, 156,
115–123.
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